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1. Let Tn be the unit cube in the n-dimensional Euclidean space Em
that is,

jo= l, ... ,n}.

Denote by x = (XI'" .,Xn),Y = (YI,'''' Yn) points ofTm and by m = (m l,· .. ,mn)
lattice point of En. For a function j of L'(Tn), its Fourier series is defined by

S(x,j) = 'ilmeim'x
m

where

J,' I J j() -im'xdm= (27T)n Tn X e X,

and 'i runs over all lattice points.
Let WR(x,j) be a summation method of the Fourier series off Then we say

that WR has the localization property (for abbreviation, L.P.) for U(Tn), if
for any j E U(Tn) vanishing on an open set, WR(x,j) converges uniformly to
zero on each compact set contained in the open set.

A classical theorem of Riemann states that in the one-dimensional case,
partial sums of Fourier series have the localization property for L I(-7T,7T).
We shall investigate the n-dimensional analogues of this theorem. In the
following we assume always n ;;;, 2.

2. Let I = (11"'" In) be a lattice point with non-negative coordinates,
and let the lth partial sum of the Fourier series ofjbe

SI(X,j) = 'ilmeim'x

where m = (m l , .. . ,mn) runs over all m such that Imjl ,,;;; Ij , j = 1, ... , n. Then
we have
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where

and

The (C, I)-mean is defined similarly by

u/(x,j) = (il-+l)~(t:-+-I) L sm(x,j)

=~J J(y) KI(x - y) dy,
7T Tn

where

and

K1(x) = K/Jxa· .. KdXn)

KliXj) = 2{sin-Wj + 1) xJ!2 sin (xJ!2}}2/(/j + 1).

We call Sl(f) a square partial sum if II = .. , = In' and a rectangular partial
sum for arbitrary Ij •

THEOREM 1. (1) Square partial sums do not have L.P. Jor C(Tn). (2) Square
(C, I)-sums have L.P.for U(Tn) ifp ~ n - 1, but not ifn - 1 > p ~ 1.

Remark 1. Rectangular (C, I)-sums have L.P. for C(Tn) but not for U(Tn),

p> 1 (see [3], p. 304).

Proof (1) We show that there exists a functionJ of C(Tn) which vanishes on
a neighborhood of the origin and satisfies

limsup !su, .... ))(0,1)1 = 00.
j-HO

Let 0 < EO < 0 < 7T and let ep be a function of C(Tn) such that ep(x) = 0 for
Ixl < EO and ep(x) = 1 for x E Tn> Ixl > o. Let us put U/f) = su..... ))(O,epf).
If our assertion did not hold, then U/f) would be bounded for each J of
C(Tn). Since the Uj are bounded linear functionals on C(Tn) and their norms
are

~J lep(y) Duo .. 'oj)(y)! dy,
7T Tn

by the uniform boundedness theorem we get

limsup \J !ep(y)Du..... ))(y)!dy<oo.
j-",o 7T Tn
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On the other hand, the above integrals are minorized by

~ J11 jSin(j + 1/2)YI! d J11 ISin (j + 1/2)Y2) d J11 !sin (j + 1/2)Ynj d
7T" ~ sin (y II2) Y I 0 sin (Y2/2) Y2 . . . 0 sin (yn/2) Yn

j <H1 /2lTT I' I
A sm YI d (I ')n-I> ----- YI ogJ

(HI/2) ~ YI

> A'(logj)n-I

for some constants A, A'. The last term is unbounded asj ~ 00 ifn > 2, which
is absurd,

To prove the second part of (2), it is sufficient to show that

is unbounded asj ~ 00, where I/p + I/q = 1. We may assume q < 00, By the
definitions of ep and K(j ..... J)' we have

I fTT {Sinu+ 1)~)2q fTT {Sinu+ 1)~)2q
I j > rr"(j + I)qn . YI dYI , Y2 dY2

~ sm - 0 sm--
2 2

f
TT {Sin(j + I) I) 2q

... dYn'
, Yn

o sm 2

The first integral is larger than some constant multiple of

f
TT . 2q(j+l)

sm -2- YI 2TTj , 2q
'2q-1 sm a ,

2q dYI>Aj J -2-q-da>A >0
~ YI J~ a

and

11 {. (j + I) )2
q

sm --- a Ifj , 2

f
.2a da>AJo {~a}qda>A'j2q-I,

o sm2
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Thus, we get a minorant of I j :

from which we conclude that I j -?- 00 ifqn - 2q - n + 1 > 0, i.e., n - 1 > p;;;. 1.
For the second part of (2), it is sufficient to prove

(A) n-l<p<oo,

where Ixi ,.;;; E', E' being fixed with 0< E' < E. In fact, let I be a function of
U(Tn) such that I = °if Ixl < 8, and let g be a function of COO(Tn) satisfying
III- gllp < 7] and g = °if Ixi < e. Then lim au..... j)(x, g) = 0, uniformly in

j->-oo

Ixi ,.;;; E', and

sup Iau.. . " j)(x,f- g)1 = sup Iau... " j)(x, ef>(f - g))I ,.;;; Alii- gllp < A7]
j j

for Ixi ,.;;; e'. Thus, lim au... "j)(x,f) = 0, uniformly in Ixi ,.;;; e'.
j-+oo

Now we prove (A). By Holder's inequality, Jau... "j)(x,ef>I)! ,.;;; 1l/llpJjlq,
where

Thus

J. ~ J11 {Sin -!U + 1) Yl}2q d J11 {Sin -!U + 1) Y2}2
q
d

J ";;;jnq '" sin -!YI Yl 0 sin-!Y2 Y2

J11 {Sin -!U + 1) Yn}2Qd
... '1 Yn

o SIn-zYn

where ex = (e - E')(yn. The first integral is finite and the others are dominated
by

Jlfj ( • )2Q J" 1~~da+ -da,.;;;Aj2Q-l

o a2Q
Iii a2Q

except for a constant multiplier. Thus we get Jj ,.;;; ArQn +(2Q-l)(n-ll, which is
bounded ifp ;;;. n - 1. Thus, (2) is proved.

3. Now we try to consider the (C, ex)-sum case. The (C, ex)-mean of the
Dirichlet kernel is by definition

j

K/(t) = L Aj~~ D.(t)(Aj "',
.=0
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where j, t are scalars and A/' = e; O() 0 We have IK/'(t) 1<j + 1. We first

assume that 0 < 0( < 10 By an elementary calculation we get

K/'(t) = 1 !Tm {~ A(r~; exp [i(v + -!-) t]}
2A IXsin! v~O

j 2

(

exp [i(j + -!-) t] f AIX-I e-1vt)
=!T t L v

m 2A IXsin- v~O
j 2

=!T (exp [i(j + -!-) t] [ 1. _ ~ AIX-I e-ivt])
m (1 -U)IX L v

2A IX 0 t - e '+1
j sm- V~J

2

0(0 1 0()
sm J+ 2+2 t IX

( )

,,+1 + H j (t),
A " 2 0 t

j sm 2

say.

Since A~-I decreases monotonically to zero, the last sum converges in
o< Itl < 7T, and by summation by parts, it does not exceed in absolute value
2Ai.;lll - e-ltl- I. Thus,

" Ai.;l 1 A ,,_I ._" -,,-IIHj (01 < A " (0 -!- Y<~ < AC J t ,
I sm t Jt

if jt > C. Since 0 < 0( < 1, C,,-I is small for large Co Therefore, if I/O() are
defined for (C, O()-kernels analogously to I j , we get in a similar way,

I/O() > Aj<n-l)(q-l)-"q.

In fact, we have

(J
TT ( 1 O() j1lq

TT A sinq j+-+- t A' TT dt I/q
(II) IK/(Olqdt}llq > JO

" 2 2 dt - j" {J t("+1)q}I) t(IX+I)q I)

since we can take A' sufficiently small for largej. We have

fTT flUo IK/(t)!qdt > 0 jqdt = Ajq-I.

In the same way as before, we getJ/O() < Aj<n-1) (q-l)-"q for the (C, O()-analogue
of Jjo Therefore we conclude
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THEOREM 2. Let 0< 0:: < 1. Then square (C, o::)-sums have L.P. for U(Tn) if
p;> (n - 1)(0::, but not if(n - 1)(0:: > p;> 1.

Remark 2. As is easily seen, in (2) of Theorem 1, we can replace (C, I)-sums
by Abel means. From this fact and from (2) of Theorem 1, if 1 < 0:: < 00,

square (C, o::)-means have L.P. for U(Tn) if p;> n - 1, but do not have it if
n-I>p;>1.

Remark 3. The case p = 1 is known, see [1] and [2].

4. As a consequence of Theorem 1, we state an analogue of Lebesgue's
theorem.

ForfEU(Tn), put

epxCY) = 2: [f(x i ±YI"'" X n ±Yn) - f(x l ,···, xn)]

where 2: sums all possible combinations of signs, and denote

THEOREM 3. Iff E U(Tn), P > n - 1, then its Fourier series is square (C, 1)­
summable to f(x) at x where Wet) = o(tn/p) (t -+ 0).

Proof We first note that

1 I" I"au, .... j)(x,j) - f(x) = n .. , epxCy)Ku ..... i)(y)dy.
7T 0 0

PutEv = {y = (YI' 00" Yn): YI' . 00, Yn;> 0, 2-V < lyl < 2-v+I}, Then by Theorem
1, the repeated integral equals

{~Lv+ IIYI';;2-M} epx(y)Ku .... ,ily)dy + 0(1),

where N is sufficiently large but fixed, and M is chosen so that 2M <j < 2M +1

Since Ku , 00 .. ily) < (j + I)n, the second integral is O(I)W(Ifj)jn/p
= 0(1).

If Y E Ev, then at least one of the Yi satisfies 2-V(yin < Yi < 2-v+ l
• Thus the

integral over Ev is dominated by

22v
n-I [I" {' (. 1(2) }2

q
]I/q<0(1)-----;-;W(2-y2-v/qT1 SIll ~+ Yi dy

} i~1 0 sIllyt/2

= 0(1) j1(n-l)/p-I} 2-v{(n-I)/p-I}.

Thus, summing over v, we get, finally, au, 00 .. j)(x,j) - f(x) = 0(1) as j -+ 00.
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Remark 4. If f EU(Tn), P;;;' 1, then ifJx.p(t) = o(tn1p) almost everywhere.
But it is known that uu..... j)(x,f) tends tof(x) almost everywhereiffE L1(Tn)

(see [3]).
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