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1. Let T, be the unit cube in the n-dimensional Euclidean space E,,
that is,
T,={x=(xp,..,x) —m<x; <7, j=1,...,n}

Denote by x = (x,,...,%,), ¥y = (¥,..., ¥») points of T, and by m = (m,...,m,)
lattice point of E,. For a function f of L(T,), its Fourier series is defined by

S, )= gfm et
where

Jn= @ ),,f f(x)e ™ *dx,

mx=mx;+...+mx, dx=dx,...dx

and Y runs over all lattice points.

Let Wg(x, f) be a summation method of the Fourier series of f. Then we say
that Wy has the localization property (for abbreviation, L.P.) for L*(T,), if
for any f'e L?(T,) vanishing on an open set, Wx(x, f) converges uniformly to
zero on each compact set contained in the open set.

A classical theorem of Riemann states that in the one-dimensional case,
partial sums of Fourier series have the localization property for L'(—a, ).
We shall investigate the n-dimensional analogues of this theorem. In the
following we assume always n > 2.

2. Let I=(l,,...,1,) be a lattice point with non-negative coordinates,
and let the /th partial sum of the Fourier series of f be

516, f) =2 fuet™

where m = (m,,...,m,) runs over all m such that |m;| </;, j=1, ..., n. Then
we have

6. = [ O) D=
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where Dy(x)= D\(x))... D,(x)
and Dy (x;) =sin(l; + §) x;/2sin(x;/2).

The (C, 1)-mean is defined similarly by

1
o(x, f) = SR (ES)) z Sml(X, )

| DK,

where Ki(x) = K, (xy) . .. Ki (%)
and Ky (x;) = 2{sin 3(/; + 1) x;/2sin (x;/2)}*/(; + D).
We call s,(f) a square partial sum if /, =... =/, and a rectangular partial

sum for arbitrary /;.

THeOREM 1. (1) Square partial sums do not have L.P. for C(T,). (2) Square
(C, 1)-sums have L.P. for L°(T,) if p=n—1,butnotifn—1>p>1.

Remark 1. Rectangular (C, 1)-sums have L.P. for C(7}) but not for L*(T,),
p>1(see [3], p. 304).

Proof. (1) We show that there exists a function f of C(T,) which vanishes on
a neighborhood of the origin and satisfies

limsup [s¢;, ... O, /)| = .

J00

Let 0 <e<d& < and let ¢ be a function of C(7,) such that ¢(x) =0 for
|x| <€ and ¢(x) =1 for xeT,, |x|>8. Let us put Uy(f)=s, ..., /(0,¢f).
If our assertion did not hold, then U,(f) would be bounded for each f of
C(T,). Since the U; are bounded linear functionals on C(T,) and their norms
are

;ifT |6(») Dy, ... 5P| dy,

by the uniform boundedness theorem we get

) 1
limsup — f [$(») Dyj,.....5\»)| dy < o.
Jowo T Tn



184 SATORU IGARI

On the other hand, the above integrals are minorized by

HJ‘ s1n(]+1/2)yl‘d1f: dysz’;

sin (y,/2)
J+1/2)m
>4 f fsin | dy, (log jy!
G+1/2)8 N1

sin(j+1/2) y,
sin(,/2)

sin(j+ 1/2) y,
sin(y,/2)

ay,

> A'(log j)™!
for some constants A, A'. The last term is unbounded as j — « if n > 2, which

is absurd.
To prove the second part of (2), it is sufficient to show that

L= [ WO

is unbounded as j — <, where 1/p + 1/g = 1. We may assume g < . By the
definitions of ¢ and K;, ., ;), we have

2 2

1 7 sin(j+1))% ! ” sin(j+1)JQ )
I>—- d —_— d
AR 2 7 ¥ &

sin &= 0 sin ==
2 2

The first integral is larger than some constant multiple of

Jm sin%4 (]—; 1) i
E

2q
Y1

275 ¢1n2e

Vg sm<“a
dy, > Aj ‘f6 - da>A'>0
J

and

IS IRY

sin —-2 a 1] ja 24

— = o [ s e
. a 0 a

0 Sll’li
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Thus, we get a minorant of I;:
[j > Aj—qnj(Zq—l)(n—l),

from which we conclude that I; — w ifgn —2¢—n+1>0,ie,n~1>p> 1.
For the second part of (2), it is sufficient to prove

(A) Sjug [U(j. .. .,j)(X, ¢f)| < Al fllp n—1l<p<oo,

where |x| < €, € being fixed with 0 < ¢ <. In fact, let f be a function of

LP(T,) such that f=0 if |x| < 8, and let g be a function of C*(T,) satisfying

I f—gll,<m and g =0 if |x| <e. Then lim o, . ;(x, g =0, uniformly in
joo

|x| < €, and

Sljp la(j....,j)(x,f_ 9= Sljp log, ... n, d(f—g)| <Alf-gll,< Ay

for |x| < €. Thus, 31_1)11 o, ... nx f)=0, uniformly in |x| < ¢'.
00

Now we prove (A). By Holder’s inequality, [o;, ... »,(x.éN)] <IIfl,7}%,
where

Jy= an |é(») K, .. .,j)(x - y)|4dy.
Thus

T

< ) " sind, siniy;
" (sind(j+ 1) y|®
f{ snly, |

where o = (e — €')/+4/n. The first integral is finite and the others are dominated

by
174 (ja)Zq A | g1
[, Goda [ guda<

except for a constant multiplier. Thus we get J; < 4j ™ +2a-D G- which is
bounded if p = n — 1. Thus, (2) is proved.

3. Now we try to consider the (C, «)-sum case. The (C, «)-mean of the
Dirichlet kernel is by definition

7
K= 3 AT DAOIAS,
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where j, ¢ are scalars and 4;* = (] j_ oc). We have |K;*(t)] <j+ 1. We first

assume that 0 < « < 1. By an elementary calculation we get

K(t) = Z A2t exp i+ 9)1]

24 sin 5 v=0

J

exp [l(.]+ JZL) t] =1 ,~ivt

T m .t Z Ae
2A,°‘s1n§ v=0

o lexpliGj+ 1] 1 _ Y ot gint
fl s 3 e

Xain =j+
24; sin 5 g

1
sm(]—l- + )
2 2
= ———————— | H*(t), say.

ot a+l
A® (2 sin 2)

Since A%"! decreases monotonically to zero, the last sum converges in
0 < |t| <, and by summation by parts, it does not exceed in absolute value

24%:H1 — e7#|~!. Thus

J+1 ’

Aa_l 1 A a—1 ;—o g—a—1

% (sind2)? ~ _5 <ACT T
if jt> C. Since 0 <a <1, C"(‘l is small for large C. Therefore, if I)(«) are
defined for (C, «)-kernels analogously to I;, we get in a similar way,

]j(“) > Aj(n—l) (a-D—agq,

[H ()] <

In fact, we have
A q 1 o la A: d 1/q
4 sin{ j+ = t Todt
eopaes A [ (g 5)e Foa ac)
{fﬁ I ’ ( )l } Ja{JB t@tDa dt J7*Us pera
> Ar/ j—g;,
since we can take A4’ sufficiently small for large j. We have
m 17, .
[0k 0lede> [ jedt = 4je-t.

In the same way as before, we get J (o) < 4j@ D@ D~ for the (C, «)-analogue
of J;. Therefore we conclude



ON THE LOCALIZATION PROPERTY OF MULTIPLE FOURIER SERIES 187
THEOREM 2. Let 0 < o < 1. Then square (C, a)-sums have L.P. for L*(T,) if
p=(n—1) o, but notif (n — Dfoe>p > 1.

Remark 2. As is easily seen, in (2) of Theorem 1, we can replace (C, 1)-sums
by Abel means. From this fact and from (2) of Theorem 1, if 1 <& < o,
square (C, «)-means have L.P. for L*(T,) if p>n — 1, but do not have it if
n—1>p=1.

Remark 3. The case p =1 is known, see [1] and [2].

4. As a consequence of Theorem 1, we state an analogue of Lebesgue’s
theorem.
For f e L*(T,), put

(}I)x(y) = Z [f(xl :tyb “e xn j:yn) _f(xla ey xn)]
where > sums all possible combinations of signs, and denote
1
Do) = B = ([ _ 18007 dy) "

THEOREM 3. If fe LP(T,), p > n— 1, then its Fourier series is square (C, 1)-
summable to f(x) at x where D(t) = o(t"?) (t — 0).

Proof. We first note that
1 ki kg
s D) 10 =% [ [ ) KO

PWE, ={y=(J1 - )i V1> --0» Yu > 0,277 < | »| < 277"}, Then by Theorem
1, the repeated integral equals

{i JEV + flylsz—m} (N K, ... n(¥)dy + o(D),

where N is sufficiently large but fixed, and M is chosen so that 2M < j < 2M*!
Since K, ... »(») <(j+ 1), the second integral is O(1)@(1/) j™'» = o(1).
If y e E,, then at least one of the y, satisfies 27%/4/n < y; <27"*!. Thus the
integral over E, is dominated by

k=1 i#k

ly|<t

22 1l (7 fsinG+1/2) y™ , T
<om2z ey [| [T R g
()= 22 1_[ R
= o(1) j((n—l)/p—l)2—V((n—l)/p—1).

Thus, summing over », we get, finally, o, ..., (X, f) —f(x) =0o(1) as j — .
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Remark 4. If fe L*(T,), p>1, then @, ,(t) = o(t"'?) almost everywhere.
But it is known that o;, ... ;(x, f) tends to f(x) almost everywhereif f € L(T;,)
(see [3]).
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